
GATE Material for Mathematics

Lesson 1:

Linear Algebra:

Introduction to Matrices:

Matrices and Determinants were discovered and developed in the eighteenth and 
nineteenth centuries. Initially, their development dealt with transformation of geometric objects 
and solution of systems of linear equations. Historically, the early emphasis was on the 
determinant, not the matrix. In modern treatments of linear algebra, matrices are considered first. 
We will not speculate much on this issue. Matrices provide a theoretically and practically useful 
way of approaching many types of problems including:

 Solution of Systems of Linear Equations,

 Equilibrium of Rigid Bodies (in physics),

 Graph Theory,

 Theory of Games,

 Leontief Economics Model,

 Forest Management,

 Computer Graphics, and Computed Tomography,

 Genetics,

 Cryptography,

 Electrical Networks,

 Fractals.



Introduction and Basic Operations:

Matrices, though they may appear weird objects at first, are a very important tool in expressing 
and discussing problems which arise from real life cases.

Our first example deals with economics. Indeed, consider two families A and B (though we may 
easily take more than two). Every month, the two families have expenses such as: utilities, 
health, entertainment, food, etc... Let us restrict ourselves to: food, utilities, and health. How 
would one represent the data collected? Many ways are available but one of them has an 
advantage of combining the data so that it is easy to manipulate them. Indeed, we will write the 
data as follows: 

If we have no problem confusing the names and what the expenses are, then we may write 

This is what we call a Matrix. The size of the matrix, as a block, is defined by the number of 
Rows and the number of Columns. In this case, the above matrix has 2 rows and 3 columns. You 
may easily come up with a matrix which has m rows and n columns. In this case, we say that the 
matrix is a (mxn) matrix (pronounce m-by-n matrix). Keep in mind that the first entry (meaning 
m) is the number of rows while the second entry (n) is the number of columns. Our above matrix 
is a (2x3) matrix.

When the numbers of rows and columns are equal, we call the matrix a square matrix. A square 
matrix of order n, is a (nxn) matrix.

Back to our example, let us assume, for example, that the matrices for the months of January, 
February, and March are 

To make sure that the reader knows what these numbers mean, you should be able to give the 
Health-expenses for family A and Food-expenses for family B during the month of February. 
The answers are 250 and 600. The next question may sound easy to answer, but requires a new 
concept in the matrix context. Indeed, what is the matrix-expense for the two families for the first 
quarter? The idea is to add the three matrices above. It is easy to determine the total expenses for 
each family and each item, then the answer is 

So how do we add matrices? An approach is given by the above example. The answer is to add 
entries one by one. For example, we have 

Clearly, if you want to double a matrix, it is enough to add the matrix to itself. So we have 

we get

which implies 



This suggests the following rule 

and for any number , we will have 

Let us summarize these two rules about matrices.

Addition of Matrices: In order to add two matrices, we add the entries one by one. 

Note: Matrices involved in the addition operation must have the same size.

Multiplication of a Matrix by a Number: In order to multiply a matrix by a number, you multiply 
every entry by the given number.

Keep in mind that we always write numbers to the left and matrices to the right (in the case of 
multiplication).

What about subtracting two matrices? It is easy, since subtraction is a combination of the two 
above rules. Indeed, if M and N are two matrices, then we will write 

M-N = M + (-1)N

So first, you multiply the matrix N by -1, and then add the result to the matrix M.

Example. Consider the three matrices J, F, and M from above. Evaluate 

Answer. We have 

and since 

we get 

To compute J-M, we note first that 

Since J-M = J + (-1)M, we get 

And finally, for J-F+2M, we have a choice. Here we would like to emphasize the fact that 
addition of matrices may involve more than one matrix. In this case, you may perform the 
calculations in any order. This is called associativity of the operations. So first we will take care 
of -F and 2M to get 

Since J-F+2M = J + (-1)F + 2M, we get 

So first we will evaluate J-F to get 

to which we add 2M, to finally obtain 



For the addition of matrices, one special matrix plays a role similar to the number zero. Indeed, if 
we consider the matrix with all its entries equal to 0, then it is easy to check that this matrix has 
behavior similar to the number zero. For example, we have 

and 
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and since
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To compute J-M, we note first that

Since J-M = J + (-1)M, we get

And finally, for J-F+2M, we have a choice. Here we would like to emphasize the fact that 
addition of matrices may involve more than one matrix. In this case, you may perform the 
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So first we will evaluate J-F to get

to which we add 2M, to finally obtain

For the addition of matrices, one special matrix plays a role similar to the number zero. Indeed, if 
we consider the matrix with all its entries equal to 0, then it is easy to check that this matrix has 
behavior similar to the number zero. For example, we have

and

What about multiplying two matrices? Such operation exists but the calculations involved are 
complicated.

What about multiplying two matrices? Such operation exists but the calculations involved are 
complicated.

Multiplication of Matrices:

Before we give the formal definition of how to multiply two matrices, we will discuss an 
example from a real life situation. Consider a city with two kinds of population: the inner 
citypopulation and the suburb population. We assume that every year 40% of the inner 
city population moves to the suburbs, while 30% of the suburb population moves to the inner 
part of the city. Let I (resp. S) be the initial population of the inner city (resp. the suburban area). 
So after one year, thepopulation of the inner part is



0.6 I + 0.3 S

while the population of the suburbs is

0.4 I + 0.7 S

After two years, the population of the inner city is

0.6 (0.6 I + 0.3 S) + 0.3 (0.4 I + 0.7 S)

and the suburban population is given by

0.4 (0.6 I + 0.3 S) + 0.7(0.4 I + 0.7 S)

Is there a nice way of representing the two populations after a certain number of years? Let us 
show how matrices may be helpful to answer this question. Let us represent the two populations 
in one table (meaning a column object with two entries):

So after one year the table which gives the two populations is

If we consider the following rule (the product of two matrices)



then the populations after one year are given by the formula

After two years the populations are

Combining this formula with the above result, we get

In other words, we have

In fact, we do not need to have two matrices of the same size to multiply them. Above, we did 
multiply a (2x2) matrix with a (2x1) matrix (which gave a (2x1) matrix). In fact, the general rule 
says that in order to perform the multiplication AB, whereA is a (mxn) matrix and B a (kxl) 
matrix, then we must haven=k. The result will be a (mxl) matrix. For example, we have



Remember that though we were able to perform the abovemultiplication, it is not possible to 
perform the multiplication

So we have to be very careful about multiplying matrices. Sentences like "multiply the two 
matrices A and B" do not make sense. You must know which of the two matrices will be to the 
right (of your multiplication) and which one will be to the left; in other words, we have to know 

whether we are asked to perform or . Even if both multiplications do make 
sense (as in the case of square matrices with the same size), we still have to be very careful. 
Indeed, consider the two matrices

We have

and



So what is the conclusion behind this example? The matrix multiplication is not 
commutative, the order in which matrices are multiplied is important. In fact, this little setback is 
a major problem in playing around with matrices. This is something that you must always be 
careful with. Let us show you another setback. We have

The product of two non-zero matrices may be equal to the zero-matrix.

Algebraic Properties of Matrix Operations:

In this page, we give some general results about the three operations: addition, multiplication, 
and multiplication withnumbers, called scalar multiplication.

From now on, we will not write (mxn) but mxn.

Properties involving Addition. Let A, B, and C be mxn matrices. We have

1.

A+B = B+A

2.

(A+B)+C = A + (B+C)

3.

where is the mxn zero-matrix (all its entries are equal to 0);

4.

if and 
only if B= -A.



Properties involving Multiplication.

1.

Let A, B, and C be three matrices. If you can perform the products AB, (AB)C, BC, and A(BC), 
then we have

(AB)C = A (BC)

Note, for example, that if A is 2x3, B is 3x3, and C is 3x1, then the above products are possible 
(in this case, (AB)C is 2x1 matrix).

2.

If and are numbers, and A is a matrix, then we have

3.

If is a number, and A and B are two matrices such that the product is possible, then 
we have

4.

If A is an nxm matrix and the mxk zero-matrix, then



Note that is the nxk zero-matrix. So if n is different from m, the two zero-matrices are 
different.

Properties involving Addition and Multiplication.

1.

Let A, B, and C be three matrices. If you can perform the appropriate products, then we have

(A+B)C = AC + BC

and

A(B+C) = AB + AC

2.

If and are numbers, A and B are matrices, then we have

and

Example. Consider the matrices

Evaluate (AB)C and A(BC). Check that you get the same matrix.



Answer. We have

  

so

On the other hand, we have

so

Example. Consider the matrices

It is easy to check that

and



These two formulas are called linear combinations. More on linear combinations will be 
discussed on a different page.

We have seen that matrix multiplication is different from 
normal multiplication (between numbers). Are there some similarities? For example, is there a 
matrix which plays a similar role as the number 1? The answer is yes. Indeed, consider the nxn 
matrix

In particular, we have

The matrix In has similar behavior as the number 1. Indeed, for any nxn matrix A, we have

A In = In A = A

The matrix In is called the Identity Matrix of order n.



Example. Consider the matrices

Then it is easy to check that

The identity matrix behaves like the number 1 not only among the matrices of the form nxn. 
Indeed, for any nxm matrix A, we have

In particular, we have

Invertible Matrices:

Invertible matrices are very important in many areas ofscience. For example, decrypting a coded 
message uses invertible matrices (see the coding page). The problem offinding the inverse of a 
matrix will be discussed in a different page.

Definition. An matrix A is called nonsingular orinvertible iff there exists an
matrix B such that



where In is the identity matrix. The matrix B is called theinverse matrix of A.

Example. Let

One may easily check that

Hence A is invertible and B is its inverse.

Notation. A common notation for the inverse of a matrix A isA-1. So

Example. Find the inverse of

Write



Since

we get

Easy algebraic manipulations give

or

The inverse matrix is unique when it exists. So if A is invertible, then A-1 is also invertible and

The following basic property is very important:



If A and B are invertible matrices, then is also invertible and

Remark. In the definition of an invertible matrix A, we used both and to be equal 
to the identity matrix. In fact, we need only one of the two. In other words, for a matrix A, if 

there exists a matrix B such that , then A is invertible and B = A-1.

Applications:

Application of Invertible Matrices: Coding

There are many ways to encrypt a message. And the use of coding has become particularly 
significant in recent years (due to the explosion of the internet for example). One way to encrypt 
or code a message uses matrices and their inverse. Indeed, consider a fixed invertible matrix A. 
Convert the message into a matrix B such that AB is possible to perform. Send the message 
generated by AB. At the other end, they will need to know A-1 in order to decrypt or decode the 
message sent. Indeed, we have

which is the original message. Keep in mind that whenever an undesired intruder finds A, we 
must be able to change it. Sowe should have a mechanical way of generating simple 
matrices A which are invertible and have simple inverse matrices. Note that, in general, the 
inverse of a matrix involves fractions which are not easy to send in an electronic form. The best 
is to have both A and its inverse with integers as their entries. In fact, we can use our previous 
knowledge to generate such class of matrices.

Indeed, if A is a matrix such that its determinant is and all its entries are integers, then A-

1 will have entries which are integers. So how do we generate such class of matrices? One 

practical way is to start with an upper triangular matrix with on the diagonal and integer-
entries. Then we use the elementary row operations to change the matrix while keeping the 



determinant unchanged. Do not multiply rows with non-integers while doing elementary row 
operations. Let us illustrate this on an example.

Example. Consider the matrix

First we keep the first row and add it to the second as well as to the third rows. We obtain

Next we keep the first row again, we add the second to the third, and finally add the last one to 
the first multiplied by -2. We obtain

This is our matrix A. Easy calculations will give det(A) = -1, which we knew since the above 
elementary operations did not change the determinant from the original triangular matrix which 
obviously has -1 as its determinant. We leave the details of the calculations to the reader. The 
inverse of A is



Back to our original problem. Consider the message

To every letter we will associate a number. The easiest wayto do that is to associate 0 to a blank 
or space, 1 to A, 2 to B, etc... Another way is to associate 0 to a blank or space, 1 to A, -1 to B, 2 
to C, -2 to D, etc... Let us use the second choice. So our message is given by the string

Now we rearrange these numbers into a matrix B. For example, we have

Then we perform the product AB, where A is the matrix found above. We get

The encrypted message to be sent is



Complex numbers as Matrices:

In this section, we use matrices to give a representation ofcomplex numbers. Indeed, consider the 
set

We will write

Clearly, the set is not empty. For example, we have



In particular, we have

for any real numbers a, b, c, and d.

Algebraic Properties of

1.

Addition: For any real numbers a, b, c, and d, we have

Ma,b + Mc,d = Ma+c,b+d.

In other words, if we add two elements of the set , we still get a matrix in . In particular, 
we have

-Ma,b = M-a,-b.



2.

Multiplication by a number: We have

So a multiplication of an element of and a number gives a matrix in .

2.

Multiplication: For any real numbers a, b, c, and d, we have



In other words, we have

Ma,b Mc,d = Mac-bd, ad+bc.

This is an extraordinary formula. It is quite conceivable given the difficult form of the matrix 

multiplication that, a priori, the product of two elements of may not be in again. But, in 
this case, it turns out to be true.

The above properties infer to a very nice structure. The next natural question to ask, in this 

case, is whether a nonzero element of is invertible. Indeed, for any realnumbers a and b, we 
have

So, if , the matrix Ma,b is invertible and



In other words, any nonzero element Ma,b of is invertible and its inverse is still in since

In order to define the division in , we will use the inverse. Indeed, recall that

So for the set , we have

Ma, b÷Mc, d = Ma, b×Mc, d
-1 = Ma, b×M ,



which implies

Ma, b÷Mc, d = M , -

The matrix Ma,-b is called the conjugate of Ma,b. Note that the conjugate of the conjugate 
of Ma,b is Ma,b itself.

Fundamental Equation. For any Ma,b in , we have

Ma,b = a M1,0 + b M0,1 = a I2 + b M0,1.

Note that

M0,1 M0,1 = M-1,0 = - I2.

Remark. If we introduce an imaginary number i such that i2= -1, then the matrix Ma,b may be 
rewritten by

a + bi

A lot can be said about , but we will advise you to visit the page on complex numbers.

Markov Chains:

In a previous page, we studied the movement between the city and suburbs. Indeed, if I are S are 
the initial populationof the inner city and the suburban area, and if we assume that every year 
40% of the inner city population moves to thesuburbs, while 30% of the 
suburb population moves to the inner part of the city, then after one year the populations are 
given by



The matrix

is very special. Indeed, the entries of each column vectors are positive and their sum is 1. Such 
vectors are calledprobability vectors. A matrix for which all the column vectors are probability 
vectors is called transition orstochastic matrix. Andrei Markov, a russian mathematician, was 
the first one to study these matrices. At the beginning of this century he developed the 
fundamentals of the Markov Chain theory.
A Markov chain is a process that consists of a finite number ofstates and some known 
probabilities pij, where pij is theprobability of moving from state j to state i. In the example 
above, we have two states: living in the city and living in thesuburbs. The number pij represents 
the probability of moving from state i to state j in one year. We may have more than two states. 
For example, political affiliation: Democrat, Republican, and Independent. For 
example, pij represents theprobability of a son belonging to party i if his father belonged to party 
j.
Of particular interest is a probability vector p such that

, that is, an eigenvector 
of Aassociated to the eigenvalue 1. Such vector is called asteady state vector. In the example 
above, the steady state vectors are given by the system



This system reduces to the equation -0.4 x + 0.3 y = 0. It is easy to see that, if we 

set , then

So the vector is a steady state 
vector of the matrix above. So if the populations of the city and the suburbs are given by the 

vector , after one year the proportions remain the same (though the people may move 
between the city and the suburbs).

Let us discuss another example on population dynamics.

Example: Age Distribution of Trees in a Forest
Trees in a forest are assumed in this simple model to fall into four age groups: b(k) denotes 
the number of baby trees in the forest (age group 0-15 years) at a given time period k; 
similarly y(k),m(k) and o(k) denote the number of young trees (16-30 years of age), middle-aged 
trees (age 31-45), and old trees (older than 45 years of age), respectively. The length of one time 
period is 15 years.
How does the age distribution change from one time period to the next? The model makes the 
following three assumptions:



 A certain percentage of trees in each age group dies.

 Surviving trees enter into the next age group; old trees remain old.

 Lost trees are replaced by baby trees.

Note that the total tree population does not change over time.

We obtain the following difference equations:

b(k+1) = (1)

y(k+1) = (1-db) b(k) (2)

m(k+1) = (1-dy) y(k) (3)

o(k+1) = (1-dm) m(k) + (1-do) o(k) (4)

Here 0 < db,dy,dm,do <1 denote the loss rates in each age group in percent.

Let

be the ``age distribution vector". Consider the matrix



Then we have

Note that the matrix A is a stochastic matrix!
If, db=.1,dy=.2,dm=.3 and do=.4, then

After easy calculations, we find the steady state vector for the age distribution in the forest:



Assume a total tree population of 50,000 trees. Suppose the forest is newly planted, i.e.

After 15 years, the age distribution in the forest is given by

After 30 years, we have

and after 45 years



After 15n years, where , the age 
distribution in the forest is given by

So the problem is to find the nth-power of the matrix A. We have seen that diagonalization 
technique may be helpful to solve this problem. Another problem deals with the long term 
behavior of the sequence x(n) when n gets large.

The calculations on the example above becomes tedious. Let us illustrate the problem on a small 
matrix.

Example. Consider the stochastic matrix



Note this is a symmetric matrix. The characteristic polynomial of A is

An eigenvector associated to 1 is



and an eigenvector associated to 0.6 is

If we set

then we have



So, we have

When n gets large, the matrices An get closer to the matrix

So the sequence of vectors defined by

will get closer to



when n gets large. If , then we 
have

Note that the vector is 
proportional to the unique steady state vector of A



This is not surprising. In fact there is a general result similar to the one above for any stochastic 
matrix.

Systems of Linear Equations: Introduction

Many books on linear algebra will introduce matrices via systems of linear equations. We tried a 
different approach. We hope this way you will appreciate matrices as a powerful tool useful not 
only to solve linear systems of equations. Basically, the problem 
of finding some unknowns linked to each others via equations is called a system of equations.

For example,

and

are systems of two equations with two unknowns (x and y), while

is a system of two equations with three unknowns (x, y, and z).



These systems of equations occur naturally in many real life problems. For example, consider a 
nutritious drink which consists of whole egg, milk, and orange juice. The food energy and 
protein for each of the ingredients are given by the table:

A natural question to ask is how much of each ingredient do we need to produce a drink of 540 
calories and 25 grams of protein. In order to answer that, let x be the number of 
eggs, ythe amount of milk (in cups), and z the amount of orange of juice (in cups). Then we need 
to have

The task of Solving a system consists of finding the unknowns, here: x, y and z. A solution is a 
set of numbers once substituted for the unknowns will satisfy the equations of the system. For 
example, (2,1,2) and (0.325, 2.25, 1.4) are solutions to the system above.

The fundamental problem associated to any system is to find all the solutions. One way is to 
study the structure of its set of solutions which, in some cases, may help finding the solutions. 
Indeed, for example, in order to find the solutions to a linear system, it is enough to find just a 
few of them. This is possible because of the rich structure of the set of solutions.

Systems of Linear Equations: Gaussian Elimination

It is quite hard to solve non-linear systems of equations, while linear systems are quite easy to 
study. There are numerical techniques which help to approximate nonlinear systems with linear 
ones in the hope that the solutions of the linear systems are close enough to the solutions of the 
nonlinear systems. We will not discuss this here. Instead, we will focus our attention on linear 
systems.

For the sake of simplicity, we will restrict ourselves to three, at most four, unknowns. The 
reader interested in the case of more unknowns may easily extend the following ideas.



Definition. The equation

a x + b y + c z + d w = h

where a, b, c, d, and h are known numbers, while x, y, z, andw are unknown numbers, is called 
a linear equation. If h=0, the linear equation is said to be homogeneous. Alinear system is a set 
of linear equations and ahomogeneous linear system is a set of homogeneous linear equations.

For example,

and

are linear systems, while

is a nonlinear system (because of y2). The system

is an homogeneous linear system.



Matrix Representation of a Linear System

Matrices are helpful in rewriting a linear system in a very simple form. The algebraic properties 
of matrices may then be used to solve systems. First, consider the linear system

Set the matrices

Using matrix multiplications, we can rewrite the linear system above as the matrix equation

As you can see this is far nicer than the equations. But sometimes it is worth to solve the system 
directly without going through the matrix form. The matrix A is called the matrix coefficient of 

the linear system. The matrix C is called the nonhomogeneous term. When , the linear 
system is homogeneous. The matrix X is the unknown matrix. Its entries are the unknowns of the 
linear system. Theaugmented matrix associated with the system is the matrix [A|C], where

In general if the linear system has n equations with munknowns, then the matrix coefficient will 
be a nxm matrix and the augmented matrix an nx(m+1) matrix. Now we turn our attention to the 
solutions of a system.



Definition. Two linear systems with n unknowns are said to be equivalent if and only if they 
have the same set of solutions.

This definition is important since the idea behind solving a system is to find an equivalent system 
which is easy to solve. You may wonder how we will come up with such system? Easy, we do 
that through elementary operations. Indeed, it is clear that if we interchange two equations, the 
new system is still equivalent to the old one. If we multiply anequation with a nonzero number, 
we obtain a new system still equivalent to old one. And finally replacing one equation with the 
sum of two equations, we again obtain an equivalent system. These operations are 
called elementary operations on systems. Let us see how it works in a particular case.

Example. Consider the linear system

The idea is to keep the first equation and work on the last two. In doing that, we will try to kill 
one of the unknowns and solve for the other two. For example, if we keep the first and 
second equation, and subtract the first one from the last one, we get the equivalent system

Next we keep the first and the last equation, and we subtract the first from the second. We get the 
equivalent system

Now we focus on the second and the third equation. We repeat the same procedure. Try to kill 
one of the twounknowns (y or z). Indeed, we keep the first and secondequation, and we add the 
second to the third after multiplying it by 3. We get



This obviously implies z = -2. From the second equation, we get y = -2, and finally from the 
first equation we get x = 4. Therefore the linear system has one solution

Going from the last equation to the first while solving for theunknowns is called backsolving.

Keep in mind that linear systems for which the matrix coefficient is upper-triangular are easy to 
solve. This is particularly true, if the matrix is in echelon form. So the trick is to perform 
elementary operations to transform the initial linear system into another one for which the 
coefficient matrix is in echelon form.
Using our knowledge about matrices, is there anyway we can rewrite what we did above in 
matrix form which will make our notation (or representation) easier? Indeed, consider the 
augmented matrix

Let us perform some elementary row operations on this matrix. Indeed, if we keep the first and 
second row, and subtract the first one from the last one we get

Next we keep the first and the last rows, and we subtract the first from the second. We get



Then we keep the first and second row, and we add the second to the third after multiplying it by 
3 to get

This is a triangular matrix which is not in echelon form. The linear system for which this matrix 
is an augmented one is

As you can see we obtained the same system as before. In fact, we followed the same elementary 
operations performedabove. In every step the new matrix was exactly the augmented matrix 
associated to the new system. This shows that instead of writing the systems over and over again, 
it is easy to play around with the elementary row operations and once we obtain a triangular 
matrix, write the associated linear system and then solve it. This is known as Gaussian 
Elimination. Let us summarize the procedure:

Gaussian Elimination. Consider a linear system.

1.

Construct the augmented matrix for the system;

2.

Use elementary row operations to transform the augmented matrix into a triangular one;

3.

Write down the new linear system for which the triangular matrix is the associated augmented 
matrix;

4.

Solve the new system. You may need to assign some parametric values to some unknowns, and 
then apply the method of back substitution to solve the new system.

Example. Solve the following system via Gaussian elimination



The augmented matrix is

We use elementary row operations to transform this matrix into a triangular one. We keep the 
first row and use it to produce all zeros elsewhere in the first column. We have

Next we keep the first and second row and try to have zeros in the second column. We get

Next we keep the first three rows. We add the last one to the third to get

This is a triangular matrix. Its associated system is



Clearly we have v = 1. Set z=s and w=t, then we have

The first equation implies

x = 2 + y + z - w - v.

Using algebraic manipulations, we get

x = - - s - t.

Putting all the stuff together, we have

Example. Use Gaussian elimination to solve the linear system

The associated augmented matrix is

We keep the first row and subtract the first row multiplied by 2 from the second row. We get



This is a triangular matrix. The associated system is

Clearly the second equation implies that this system has no solution. Therefore this linear system 
has no solution.

Definition. A linear system is called inconsistent or overdetermined if it does not have a 
solution. In other words, the set of solutions is empty. Otherwise the linear system is 
called consistent.

Following the example above, we see that if we perform elementary row operations on the 

augmented matrix of the system and get a matrix with one of its rows equal to , 

where , then the system is inconsistent.

Systems of linear equations in Two variables:

A system of equations is a collection of two or more equations with the same set of unknowns. In 
solving a system of equations, we try to find values for each of the unknowns that will satisfy 
everyequation in the system.
The equations in the system can be linear or non-linear. This tutorial reviews systems of 
linear equations.
A problem can be expressed in narrative form or the problem can be expressed in algebraic form.
Let's start with an example stated in narrative form. We'll convert it to an equivalent equation in 
algebraic form, and then we will solve it.

Example 1:
A total of $12,000 is invested in two funds paying 9% and 11% simple interest. If the yearly 
interest is $1,180, how much of the $12,000 is invested at each rate?



Before you work this problem, you must know the definition of simple interest. Simple interest 
can be calculated by multiplying the amountinvested at the interest rate.

Solution:
We have two unknowns: the amount of money invested at 9% and the amount of money invested 
at 11%. Our objective is to find these two numbers.
Sentence (1) ''A total of $12,000 is invested in two funds paying 9% and 11% simple interest.'' 

can be restated as (The amount of money invested at 9%) (The amount of money invested at 
11%) $12,000.
Sentence (2) ''If the yearly interest is $1,180, how much of the $12,000 is invested at each rate?'' 

can be restated as (The amount of money invested at 9%) 9% + (The amount of money 

invested at 11% 11%) total interest of $1,180.

It is going to get tiresome writing the two phrases (The amount of money invested at 9%) and 
(The amount of money invested at 11%) over and over again. So let's write them in shortcut 
form. Call the phrase (The amount of money invested at 9%) by the symbol and call the 

phrase (The amount of money invested at 11% times 11%) by the symbol .

Let's rewrite sentences (1) and (2) in shortcut form.

We have converted a narrative statement of the problem to an equivalent algebraic statement of 
the problem. Let's solve this system of equations.

A system of linear equations can be solved four different ways:

Substitution,

Elimination,

Matrices,



Graphing.

The Method of Substitution:

The method of substitution involves five steps:

Step 1: Solve for y in equation (1).

Step 2: Substitute this value for y in equation (2). This will changeequation (2) to 
an equation with just one variable, x.

Step 3: Solve for x in the translated equation (2).



Step 4: Substitute this value of x in the y equation you obtained in Step 1.

Step 5: Check your answers by substituting the values of x and y in each of the 
original equations. If, after the substitution, the left side of the equation equals the right side of 
the equation, you know that your answers are correct.

The Method of Elimination:

The process of elimination involves five steps:

In a two-variable problem rewrite the equations so that when theequations are added, one of 
the variables is eliminated, and then solve for the remaining variable.



Step 1: Change equation (1) by multiplying equation (1) by to obtain a new and 
equivalent equation (1).

  

Step 2: Add new equation (1) to equation (2) to obtain equation (3).

Step 3: Substitute in equation (1) and solve for x.



Step 4: Check your answers in equation (2). Does

The Method of Matrices:

This method is essentially a shortcut for the method of elimination.

Rewrite equations (1) and (2) without the variables and operators. The left column contains the 
coefficients of the x's, the middle column contains the coefficients of the y's, and the right 
column contains the constants.



The objective is to reorganize the original matrix into one that looks like

where a and b are the solutions to the system.

Step 1. Manipulate the matrix so that the number in cell 11 (row 1-col 1) is 1. In this case, we 
don't have to do anything. The number 1 is already in the cell.

Step 2: Manipulate the matrix so that the number in cell 21 is 0. To do this we rewrite the matrix 
by keeping row 1 and creating a new row 2 by adding -0.09 x row 1 to row 2.

Step 3: Manipulate the matrix so that the cell 22 is 1. Do this by multiplying row 2 by 50.



Step 4: Manipulate the matrix so that cell 12 is 0. Do this by adding

You can read the answers off the matrix as x = $7,000 and y = $5,000.

Determinants:

Introduction to Determinants:

For any square matrix of order 2, we have found a necessary and sufficient condition for 
invertibility. Indeed, consider the matrix

The matrix A is invertible if and only if . We called 
this number the determinant of A. It is clear from this, that we would like to have a similar result 
for bigger matrices (meaning higher orders). So is there a similar notion of determinant for 
any square matrix, which determines whether a square matrix is invertible or not?

In order to generalize such notion to higher orders, we will need to study the determinant and see 
what kind of properties it satisfies. First let us use the following notation for the determinant



Properties of the Determinant

1. Any matrix A and its transpose have the same determinant, meaning

This is interesting since it implies that whenever we use rows, a similar behavior will result if we 
use columns. In particular we will see how row elementary operations are helpful in finding the 
determinant. Therefore, we have similar conclusions for elementary column operations.
2. The determinant of a triangular matrix is the product of the entries on the diagonal, that is

3. If we interchange two rows, the determinant of the new matrix is the opposite of the old one, 
that is

4. If we multiply one row with a constant, the determinant of the new matrix is the determinant 
of the old one multiplied by the constant, that is

In particular, if all the entries in one row are zero, then the determinant is zero.
5. If we add one row to another one multiplied by a constant, the determinant of the new matrix 
is the same as the old one, that is



Note that whenever you want to replace a row by something (through elementary operations), do 
not multiply the row itself by a constant. Otherwise, you will easily make errors (due to Property 
4).
6. We have

In particular, if A is invertible (which happens if and only if ), then

If A and B are similar, then .

Let us look at an example, to see how these properties work.

Example. Evaluate

Let us transform this matrix into a triangular one through elementary operations. We will keep 

the first row and add to the second one the first multiplied by . We get

Using the Property 2, we get



Therefore, we have

which one may check easily.

Determinants of Matrices of Higher Order:

As we said before, the idea is to assume that previous properties satisfied by the determinant of 
matrices of order 2, are still valid in general. In other words, we assume:

1. Any matrix A and its transpose have the same determinant, meaning

2. The determinant of a triangular matrix is the product of the entries on the diagonal.
3. If we interchange two rows, the determinant of the new matrix is the opposite of the old one.
4. If we multiply one row with a constant, the determinant of the new matrix is the determinant 
of the old one multiplied by the constant.
5. If we add one row to another one multiplied by a constant, the determinant of the new matrix 
is the same as the old one.
6. We have

In particular, if A is invertible (which happens if and only if ), then



So let us see how this works in case of a matrix of order 4.

Example. Evaluate

We have

If we subtract every row multiplied by the appropriate number from the first row, we get

We do not touch the first row and work with the other rows. We interchange the second with the 
third to get

If we subtract every row multiplied by the appropriate number from the second row, we get



Using previous properties, we have

If we multiply the third row by 13 and add it to the fourth, we get

which is equal to 3. Putting all the numbers together, we get

These calculations seem to be rather lengthy. We will see later on that a general formula for the 
determinant does exist.

Example. Evaluate

In this example, we will not give the details of the elementary operations. We have



Example. Evaluate

We have

General Formula for the Determinant Let A be a square matrix of order n. Write A = (aij), 

where aij is the entry on the row numberi and the column number j, for and

. For any i and j, set Aij (called the cofactors) to be the determinant of the square 
matrix of order (n-1) obtained from A by removing the row number i and the column number j 
multiplied by (-1)i+j. We have

for any fixed i, and

for any fixed j. In other words, we have two type of formulas: along a row (number i) or along a 
column (number j). Any row or any column will do. The trick is to use a row or a column which 
has a lot of zeros.
In particular, we have along the rows



or

or

As an exercise write the formulas along the columns.

Example. Evaluate

We will use the general formula along the third row. We have

Which technique to evaluate a determinant is easier ? The answer depends on the person who is 
evaluating the determinant. Some like the elementary row operations and some like the 
general formula. All that matters is to get the correct answer.



Determinant and Inverse of Matrices:

Finding the inverse of a matrix is very important in many areas of science. For example, 
decrypting a coded message uses the inverse of a matrix. Determinant may be used toanswer this 
problem. Indeed, let A be a square matrix. We know that A is invertible if and only 

if . Also ifA has order n, then the cofactor Ai,j is defined as the determinant of the 
square matrix of order (n-1) obtained from A by removing the row number i and the 
columnnumber j multiplied by (-1)i+j. Recall

for any fixed i, and

for any fixed j. Define the adjoint of A, denoted adj(A), to be the transpose of the matrix 
whose ijth entry is Aij.

Example. Let

We have

Let us evaluate . We have



Note that . Therefore, we have

Is this formula only true for this matrix, or does a similarformula exist for any square matrix? In 
fact, we do have a similar formula.

Theorem. For any square matrix A of order n, we have

In particular, if , then

For a square matrix of order 2, we have

which gives



This is a formula which we used on a previous page.

Eigenvalues and Eigenvectors:

The eigenvalue problem is a problem of considerable theoretical interest and wide-
ranging application. For example, this problem is crucial in solving systems of 
differentialequations, analyzing population growth models, andcalculating powers of matrices (in 
order to define the exponential matrix). Other areas such as 
physics, sociology,biology, economics and statistics have focused considerableattention on 
"eigenvalues" and "eigenvectors"-theirapplications and their computations. Before we give the 
formal definition, let us introduce these concepts on an example.

Example. Consider the matrix

Consider the three column matrices

We have

In other words, we have

Next consider the matrix P for which the columns are C1, C2, and C3, i.e.,



We have det(P) = 84. So this matrix is invertible. Easy calculations give

Next we evaluate the matrix P-1AP. We leave the details to the reader to check that we have

In other words, we have

Using the matrix multiplication, we obtain

which implies that A is similar to a diagonal matrix. In particular, we have

for . Note that it is almost impossible to findA75 directly from the original form 
of A.

This example is so rich of conclusions that many questions impose themselves in a natural 
way. For example, given a square matrix A, how do we find column matrices which have similar 
behaviors as the above ones? In other words, how do we find these column matrices which will 
help find the invertible matrix P such that P-1AP is a diagonal matrix?

From now on, we will call column matrices vectors. So the above column matrices C1, C2, 
and C3 are now vectors. We have the following definition.



Definition. Let A be a square matrix. A non-zero vector C is called an eigenvector of A if and 

only if there exists a number (real or complex) such that

If such a number exists, it is called an eigenvalue of A. The vector C is called eigenvector 

associated to the eigenvalue .

Remark. The eigenvector C must be non-zero since we have

for any number .

Example. Consider the matrix

We have seen that

where

So C1 is an eigenvector of A associated to the eigenvalue 0.C2 is an eigenvector of A associated 
to the eigenvalue -4 while C3 is an eigenvector of A associated to the eigenvalue 3.

It may be interesting to know whether we found all the eigenvalues of A in the above example. In 
the next page, we will discuss this question as well as how to find the eigenvalues of a square 
matrix.

Computation of Eigenvalues:

For a square matrix A of order n, the number is an eigenvalue if and only if there exists a non-
zero vector C such that



Using the matrix multiplication properties, we obtain

This is a linear system for which the matrix coefficient is . We also know that this 
system has one solution if and only if the matrix coefficient is invertible, i.e.

. Since the zero-vector is a solution and C is not the zero vector, then we 
must have

Example. Consider the matrix

The equation translates into

which is equivalent to the quadratic equation



Solving this equation leads to

In other words, the matrix A has only two eigenvalues.

In general, for a square matrix A of order n, the equation

will give the eigenvalues of A. This equation is called thecharacteristic 

equation or characteristic polynomial ofA. It is a polynomial function in of degree n. So we 
know that this equation will not have more than n roots or solutions. So a square matrix A of 
order n will not have more than n eigenvalues.

Example. Consider the diagonal matrix

Its characteristic polynomial is

So the eigenvalues of D are a, b, c, and d, i.e. the entries on the diagonal.

This result is valid for any diagonal matrix of any size. So depending on the values you have on 
the diagonal, you may have one eigenvalue, two eigenvalues, or more. Anything is possible.



Remark. It is quite amazing to see that any square matrix Ahas the same eigenvalues as its 
transpose AT because

For any square matrix of order 2, A, where

the characteristic polynomial is given by the equation

The number (a+d) is called the trace of A (denoted tr(A)), and clearly the number (ad-bc) is the 
determinant of A. So the characteristic polynomial of A can be rewritten as

Let us evaluate the matrix

B = A2 - tr(A) A + det(A) I2.

We have

We leave the details to the reader to check that



In other word, we have

This equation is known as the Cayley-Hamilton theorem. It is true for any square matrix A of 
any order, i.e.

where is the characteristic polynomial of A.

We have some properties of the eigenvalues of a matrix.

Theorem. Let A be a square matrix of order n. If is an eigenvalue of A, then:

1. is an eigenvalue of Am, for

2. If A is invertible, then is an eigenvalue of A-1.

3. A is not invertible if and only if is an eigenvalue of A.

4. If is any number, then is an eigenvalue of .
5. If A and B are similar, then they have the same characteristic polynomial (which implies they 
also have the same eigenvalues).



Computation of Eigenvectors:

Let A be a square matrix of order n and one of its eigenvalues. Let X be an eigenvector 

of A associated to . We must have

This is a linear system for which the matrix coefficient is . Since the zero-vector is a 
solution, the system is consistent. In fact, we will in a different page that the structure of the 
solution set of this system is very rich. In this page, we will basically discuss how to find the 
solutions.

Remark. It is quite easy to notice that if X is a vector which satisfies , then the 

vector Y = c X (for any arbitrary number c) satisfies the same equation, i.e. . In other 
words, if we know that X is an eigenvector, then cX is also an eigenvector associated to the same 
eigenvalue.

Let us start with an example.

Example. Consider the matrix

First we look for the eigenvalues of A. These are given by the 

characteristic equation , i.e.

If we develop this determinant using the third column, we obtain



Using easy algebraic manipulations, we get

which implies that the eigenvalues of A are 0, -4, and 3.
Next we look for the eigenvectors.

1. Case : The associated eigenvectors are given by the linear system

which may be rewritten by

Many ways may be used to solve this system. The third equation is identical to the first. Since, 
from the second equations, we have y = 6x, the first equation reduces to 13x+ z = 0. So this 
system is equivalent to

So the unknown vector X is given by

Therefore, any eigenvector X of A associated to the eigenvalue 0 is given by



where c is an arbitrary number.

2. Case : The associated eigenvectors are given by the linear system

which may be rewritten by

In this case, we will use elementary operations to solve it. First we consider the augmented 

matrix , i.e.

Then we use elementary row operations to reduce it to a upper-triangular form. First we 
interchange the first row with the first one to get



Next, we use the first row to eliminate the 5 and 6 on the first column. We obtain

If we cancel the 8 and 9 from the second and third row, we obtain

Finally, we subtract the second row from the third to get

Next, we set z = c. From the second row, we get y = 2z = 2c. The first row will imply x = -
2y+3z = -c. Hence

Therefore, any eigenvector X of A associated to the eigenvalue -4 is given by



where c is an arbitrary number.

2. Case : The details for this case will be left to the reader. Using similar ideas as the one 
described above, one may easily show that any eigenvector X of A associated to the eigenvalue 3 
is given by

where c is an arbitrary number.

Remark. In general, the eigenvalues of a matrix are not all distinct from each other (see the page 
on the eigenvalues formore details). In the next two examples, we discuss this problem.

Example. Consider the matrix

The characteristic equation of A is given by

Hence the eigenvalues of A are -1 and 8. For the eigenvalue 8, it is easy to show that any 
eigenvector X is given by



where c is an arbitrary number. Let us focus on the eigenvalue -1. The associated eigenvectors 
are given by the linear system

which may be rewritten by

Clearly, the third equation is identical to the first one which is also a multiple of the 
second equation. In other words, this system is equivalent to the system reduced to one equation

2x+y + 2z= 0.

To solve it, we need to fix two of the unknowns and deduce the third one. For example, if we 

set and , we obtain . Therefore, any 
eigenvector Xof A associated to the eigenvalue -1 is given by

In other words, any eigenvector X of A associated to the eigenvalue -1 is a linear combination of 
the two eigenvectors

Example. Consider the matrix

The characteristic equation is given by



Hence the matrix A has one eigenvalue, i.e. -3. Let us find the associated eigenvectors. These are 
given by the linear system

which may be rewritten by

This system is equivalent to the one equation-system

x - y = 0.

So if we set x = c, then any eigenvector X of A associated to the eigenvalue -3 is given by

Let us summarize what we did in the above examples.

Summary: Let A be a square matrix. Assume is an eigenvalue of A. In order to find the 
associated eigenvectors, we do the following steps:

1. Write down the associated linear system

2. Solve the system.
3. Rewrite the unknown vector X as a linear combination of known vectors.

The above examples assume that the eigenvalue is realnumber. So one may wonder whether 
any eigenvalue is always real. In general, this is not the case except for symmetric matrices. The 
proof of this is very complicated. For square matrices of order 2, the proof is quite easy. Let us 
give it here for the sake of being little complete.
Consider the symmetric square matrix



Its characteristic equation is given by

This is a quadratic equation. The nature of its roots (which are the eigenvalues of A) depends on 
the sign of the discriminant

Using algebraic manipulations, we get

Therefore, is a positive number which implies that the eigenvalues of A are real numbers.

Remark. Note that the matrix A will have one eigenvalue, i.e. one double root, if and only 

if . But this is possible only if a=c and b=0. In other words, we have

A = a I2.

The Case of Complex Eigenvalues:

First let us convince ourselves that there exist matrices withcomplex eigenvalues.

Example. Consider the matrix

The characteristic equation is given by

This quadratic equation has complex roots given by



Therefore the matrix A has only complex eigenvalues.

The trick is to treat the complex eigenvalue as a real one. Meaning we deal with it as 
a number and do the normalcalculations for the eigenvectors. Let us see how it works onthe 
above example.

We will do the calculations for . The associated eigenvectors are given by the 
linear system

A X = (1+2i) X

which may be rewritten as

In fact the two equations are identical since (2+2i)(2-2i) = 8. So the system reduces to 
one equation

(1-i)x - y = 0.

Set x=c, then y = (1-i)c. Therefore, we have

where c is an arbitrary number.

Remark. It is clear that one should expect to have complexentries in the eigenvectors.

We have seen that (1-2i) is also an eigenvalue of the above matrix. Since the entries of the 

matrix A are real, then one may easily show that if is a complex eigenvalue, then its 

conjugate is also an eigenvalue. Moreover, if X is an eigenvector of A associated to , then 

the vector , obtained from X by taking the complex-conjugate of the entries of X, is an 

eigenvector associated to . So the eigenvectors of the above matrix A associated to the 
eigenvalue (1-2i) are given by



where c is an arbitrary number.

Let us summarize what we did in the above example.

Summary: Let A be a square matrix. Assume is acomplex eigenvalue of A. In order to find 
the associated eigenvectors, we do the following steps:

1. Write down the associated linear system

2. Solve the system. The entries of X will be complex numbers.
3. Rewrite the unknown vector X as a linear combination of known vectors with complex 
entries.

4. If A has real entries, then the conjugate is also an eigenvalue. The associated eigenvectors 
are given by the same equation found in 3, except that we should take the conjugate of the entries 
of the vectors involved in the linear combination.

In general, it is normal to expect that a square matrix with real entries may still 
have complex eigenvalues. One may wonder if there exists a class of matrices with only real 
eigenvalues. This is the case for symmetric matrices. The proof is very technical and will be 
discussed in another page. But for square matrices of order 2, the proof is quite easy. Let us give 
it here for the sake of being little complete.

Consider the symmetric square matrix

Its characteristic equation is given by



This is a quadratic equation. The nature of its roots (which are the eigenvalues of A) depends on 
the sign of the discriminant

Using algebraic manipulations, we get

Therefore, is a positive number which implies that the eigenvalues of A are real numbers.

Remark. Note that the matrix A will have one eigenvalue, i.e. one double root, if and only 

if . But this is possible only if a=c and b=0. In other words, we have

A = a I2.


